METROLOGY FOR CLIMATE ACTION

Bureau International des

Mesures

supporting metrology for Earth observation with highly accurate radiative transfer simulation

V. Leroy, Y. Nollet, S. Schunke, N. Misk, Y. Govaerts

26–30 SEPTEMBER 2022

1 | Radiative transfer models are essential to cal/val

Calibration: unbroken chain of comparison of measurement devices traceable to SI

This cannot be done with radiometers onboard satellites.

2 | RTMs can be improved

Modern radiometers require **simulated references with 1% accuracy**, but RTMs generally don't meet this requirement. Likely causes:

- Insufficiently accurate **absorption modelling** (may be the method or the input data)
- **1D plane-parallel** assumption (no planetary curvature, no relief, no adjacency)

Other issues:

- Difficult to use and fine-tune highly accurate models
- Compartmentalised community: subcommunities address
 issues but have no platform to share their advances
- Little benefit from modern technology

3 | Towards 1% accuracy with Eradiate

Highly accurate

- Monte Carlo ray tracing (Mitsuba renderer)
- 3D geometry
- State-of-the-art molecular absorption modelling

Built to integrate models more easily

- Flexible platform
- Free and open-source software
- High-quality documentation

Modern software technology

- Modular design (extensible)
- Robust testing process
- Intuitive Python interface

Main features

- Hyperspectral simulation of TOA signal
- 1D plane-parallel and spherical-shell atmosphere
- AFGL (1986) standard atmospheric profiles
- 3D surface (vegetation)

5 | Outlook

Better reliability

- Compare vs other models, benchmarking (RAMI-V, RAMI4ATM)
- Compare vs observations, eventually TRUTHS

Better accuracy

- Better gaseous absorption modelling
- More scattering models

4 | Example: influence of planetary curvature

First example of SEVIRI time series (Libya 4 PICS)

- Grazing illumination in the morning and evening
- Atmospheric and aerosol data from ERA5 and CAMS
- RPV surface
- Plane-parallel (PPA) vs spherical-shell (SSA)
- WIP (simulations being improved, don't match observations very well)

Qualitative observations

- Hot spot correctly captured
- Morning and evening peaks only visible with
- SSA, yet to explain
- Important impact of SSA vs PPA at SZA > 60°

Better traceability

- Ship and handle SI-traceable data
- Use for uncertainty propagation

