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Introduction … Motivation
• Importance of Reference Materials for monitoring of 

trace gases in atmosphere

Gas cylinders containing air with certified 
amounts/fractions of some trace gas(es)

• RM Gas Cylinders suffer from a known issue: trace gas 
mole fraction changes as the cylinder is drawn down

• DQO by WMO: 0.1 and 0.05 µmol/mol

Heuristic Solution: Discard cylinder at some “low” p

• Exemplar: Trace CO2 in synthetic Air

• Questions: What is “low” p? Alloy effects? Surface 
treatment effects?

CO2 Mole Fraction monitored while slowly drawing down pressure 
over the course of two months.
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0.5 µmol/mol rise in CO2 mole fraction



From: Leuenberger, Schibig, and Nyfeler, Atmos Meas Tech (2015)

CO2 in Air, tempered steel cylinder (34CrMo4) 295 K

Consistent with Adsorption/Desorption
Leuenberger et al (2015): Model of composition change 
versus pressure:
1. CO2 loss follows Langmuir Isotherm (Type 1)
2. No mass-transfer resistances
3. Slow decant, for temperature stability
4. Steel, Aluminum cylinders
5. CO2, CH4, CO

Γ! = Γ"
𝐾! 𝑝!

1 + 𝐾! 𝑝!
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Mother/Daughter Generation Tests

From: Miller, Rhoderick, Guenther, Analytical Chemistry (2015)

CO2 mole fraction ratio (rel. to mother) in Alum. cylinders
1. High-pressure “mother,” initial 390 µmol/mol CO2 amount fraction

2. Transfer from mother to “daughters” until pressure and temperature 
equilibrium established

3. Composition analysis by Cavity Ring-down Spectroscopy, comparison of mother 
to daughters

NOTE: Mother composition re-analyzed periodically against NIST primary standard mixtures

4. Repeat 2-3 to progressively draw down the mother

Observation:

Highest pressure daughter shows most CO2 “loss”

Consistent with adsorption hypothesis
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Objectives of Present Work

• Building an experimental apparatus to decant cylinders faster than normal use. 
Accelerate controlled analysis of cylinders

• Improve theoretical model of cylinder discharge, include adsorption without 
mandating a particular equilibrium form.  Multiple adsorbing species

• Use the experimental results in tandem with the improved model to gain 
understanding of the limitations and factors critical for improving measurements. 

• Measurements/modeling guide extended life of RM cylinders, fast and robust 
prediction of cylinder behavior, suggest (rule out) mechanism(s) for composition 
changes
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Experimental Apparatus
• Temperature-stabilized cylinder chamber for extended 

measurements and control (stable over duration of experiment)

• Multiple pressure sensors and controllers. Pressure dynamic range 
from 3.5 MPa to 34 kPa.

• Sensitive Mass flow controllers (for measurement precision and 
accuracy) [0.015 l/min (STP)]

• Impurity analysis and reduction (Turbomolecular pumping system, 
manifold purging, and low temperature baking to remove water)

• Use of spectroscopic techniques with excellent stability, 
repeatability, reproducibility. Cavity ring-down spectrometer and 
other ex-situ instruments with sensitivities in very low amount 
fractions

• FAIR Data Acquisition: Use standard formats, like the Adsorption 
Information Format (IUPAC)
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Experimental Results
Aluminum Alloy Cylinder, CO2 in Air

Decant cylinder over 7-8 days

1) Leuenberger model fits the observed trend

2) Model estimation of “adsorption excess” relative 
to bulk phase CO2

Excess =
Γ! 𝑝!,# 𝐴

𝑁$,!,# + Γ! 𝑝!,# 𝐴
≈

Γ%𝐴𝑅𝑇/𝑉
𝑦!,# 𝑝#
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396.7 µmol/mol 396.9 µmol/mol

K (equilibrium constant) 0.0066 1/Pa 0.0079 1/Pa

Half pressure 151 Pa 124 Pa

95% max loading 2860 Pa 2418 Pa

Rel. adsorption excess 2.4e-10 2.5e-10

540-580 kPa

Leuenberger, Schibig, and Nyfeler, Atmos Meas Tech (2015)



Consistency with Leuenberger Model

𝑦! 𝑝
𝑦!,#

− 1 = −𝐾!
Γ%𝐴𝑅𝑇
𝑉 ln

𝐾!𝑦!,#𝑝
1 + 𝐾!𝑦!,#𝑝

+
1

1 + 𝐾!𝑦!,#𝑝
≈ −𝐾!

Γ%𝐴𝑅𝑇
𝑉 ln

𝐾!𝑝!
1 + 𝐾!𝑝!

+
1

1 + 𝐾!𝑝!

• Measurements consistent with Leuenberger
model for range of pressures of compositions

• “Master curve” when plotted versus CO2 partial 
pressure; model can be written in approximate 
form

8

Leuenberger, Schibig, and Nyfeler, Atmos Meas Tech (2015)



Improved Cylinder Discharge Model
Mass Balance 𝑁! = 𝑁$,! + 𝑁&,! =

𝑝!𝑉
𝑅𝑇 + Γ! 𝑝', ⋯ , 𝑝( 𝐴

Loss Function 𝑑𝑁!
𝑑𝑡 = −𝑦!𝑁̇ where 𝑦! =

𝑁$,!
∑(𝑁$,(

=
𝑝!
𝑝

Adsorption Constraint
Interchangeable

Other Isothermal (no heat/energy balance)
Normalize extensive quantities by V

Solution Method Euler integration, stop/start equilibrium
[forward propagation, recompute EQ conditions, 
repeat]

Key Changes: Solution is for mass (mol) quantities; agnostic to adsorption model.
“Down side”: Numerical solution (vs. analytic Leuenberger)
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Improved Cylinder Discharge Model
Mass Balance 𝑁! = 𝑁$,! + 𝑁&,! =

𝑝!𝑉
𝑅𝑇 + Γ! 𝑝', ⋯ , 𝑝( 𝐴

Loss Function 𝑑𝑁!
𝑑𝑡 = −𝑦!𝑁̇ where 𝑦! =

𝑁$,!
∑(𝑁$,(

=
𝑝!
𝑝

Adsorption Constraint
Traditional Langmuir:    Γ! @

)
*
= +!)

*
," -"

'.," -"

Other Isothermal (no heat/energy balance)
Normalize extensive quantities by V

Solution Method Euler integration, stop/start equilibrium
[forward propagation, recompute EQ conditions, 
repeat]
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Improved Model: Consistency Check
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• Improved model essentially identical to 
Leuenberger model for single adsorbing species

• New questions:
• Mother/daughter modeling
• Sensitivity to fitted parameters

• NOTE: Approximate analytic solution available, 
not used



Mother/Daughter Generation Tests
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Mother/Daughter Generation Tests

Assumption: daughter vessels have same adsorption characteristics as mother
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Mother/Daughter Generation Tests

Now decant the daughter vessels
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Parameter Sensitivity

Langmuir Parameters:

Γ! = Γ%
𝐾! 𝑝!

1 + 𝐾! 𝑝!

𝐾!: Pressure Scale
Γ%: Maximum Adsorption

Expectations:
𝐾!: Incr Decr → Decr (Incr) Desorption p
Γ%: Incr Decr → Incr (Decr) “Loss”
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Multiple Adsorbing Species
Mass Balance 𝑁! = 𝑁$,! + 𝑁&,! =

𝑝!𝑉
𝑅𝑇 + Γ! 𝑝', ⋯ , 𝑝( 𝐴

Loss Function 𝑑𝑁!
𝑑𝑡 = −𝑦!𝑁̇ where 𝑦! =

𝑁$,!
∑(𝑁$,(

=
𝑝!
𝑝

Adsorption Constraint
Extended Langmuir:    Γ! @

)
*
= +!)

*
," -"

'.∑# ,# -#

Other Isothermal (no heat/energy balance)
Normalize extensive quantities by V

Solution Method Euler integration, stop/start equilibrium
[forward propagation, recompute EQ conditions, 
repeat]

Extended Langmuir: Same adsorption sites / surface area, each adsorbing species has different equilibrium constant
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Binary / Competitive Adsorption
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• Test example: CO2 (~400 µmol/mol) and H2O (~200 µmol/mol) in Air

• H2O mole fraction increases by 250 %

• Extended Langmuir Model fails to fit experimental measurements

• Test single component model: independent fits to measurements, 
but is physically inconsistent: Γ%(H2O) = 500 ×Γ%(CO2)

• Inconclusive modeling; H2O adsorption mechanism is clearly 
different from CO2, but the correct adsorption mechanism (for H2O 
and CO2, and any interaction) is not clear



• New apparatus can mimic use of reference gas vessels; data fit trends that are 
consistent with Langmuir-type adsorption

• Improved model can fit experimental measurements, yielding adsorption fitting 
parameters that allow for other modeling (M/D transfers), sensitivity testing, 
and examination of vessels with multiple adsorbing species

• Future measurements will focus on gas mixtures that show competitive or co-
adsorption, with the intention of fitting the measured composition traces to our 
improved model

• Caveat: More complex adsorption models may be necessary.

Conclusions and Future Work
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