Quantifying combined uncertainties of $\delta^{13}C_{CO_2}$ & $\delta^{18}O_{CO_2}$ from 20-year calibration datasets: how good could we achieve in realization of VPDB-CO₂ scale via NBS19 etc. carbonates?

Lin Huang, Alina Chivulescu, Wendy Zhang

Introduction Characterizing combined uncertainties of		ed for app	lication areas whi	ch require ti	he smallest pos	ompatibility ssible bias among and the second se
GHGs & related tracers (i.e., $\delta^{13}C_{CO2}$ or	uutu		le 1. Recommended		patibility of measu	
$\delta^{18}O_{CO2}$) is required for improving	-	Component	Network compatibility goal ¹	Extended network compatibility goal ²	Range in unpolluted troposphere (approx. range for	Range covered by the WMO scale
 Uncertainties in CO₂ flux estimation 		CO ₂ CH ₄ CO	0.1 ppm (NH) 0.05 ppm (SH) 2 ppb 2 ppb	0.2 ppm 5 ppb 5 ppb	2019) 380 - 450 ppm 1750 - 2100 ppb 30 - 300 ppb	250 – 520 ³ ppm 300 – 5900 ppb 30 - 500 ppb
using atmospheric measurements, and		N_2O SF_6 H_2 $\delta^{13}C-CO_2$	0.1 ppb 0.02 ppt 2 ppb 0.01‰	0.3 ppb 0.05 ppt 5 ppb 0.1‰	325 - 335 ppb 9 - 11 ppt 400 - 600 ppb -9.5 to -7.5%	260 – 370 ppb 2.0 – 20 ppt 140 –1200 ppb
 Uncertainties in atmospheric trend 		δ ¹⁸ Ο-CO ₂ δ ¹³ C-CH ₄	0.05‰ 0.02‰	0.1‰	(VPDB) -2 to +2‰ (VPDB-CO ₂) -51 to -46‰ (VPDB)	
analysis		δ ² H-CH ₄ Δ ¹⁴ C-CO ₂ Δ ¹⁴ C-CH ₄	1‰ 0.5‰ 0.5‰	5‰ 3‰	-120 to -63‰ (VSMOW) -80 to 20‰ 50-350‰	
WMO community set the targets for the		$\Delta^{14}C-CO$ O_2/N_2	2 molecules cm ⁻³ 2 per meg	10 per meg	0-25 molecules cm ⁻³ -900 to -400 per meg (vs. SIO scale)	
<u>smallest possible bias</u> among	-	*GAW repor	t #255, 2019		Scaley	
datasets/data providers required for these	-	The c	orrespor	nding	values f	or
purposes (see Table 1: Recommended		δ ¹³ C _C	$_{\text{D2}}$ & δ^{18} C	o _{co2} ar	e heigh	ted in
network compatibility in WMO-GAW	Į	greer	above.	Scient	ists in t	he
<i>report #255</i>).	(comn	nunity ha	ave be	en wor	king
		hard [.]	to achiev	ve the	se goals	5.

Combined Uncertainties of four carbonates on the traceability path

The table at the right shows the **annual means** on "Relative Deviations" of the four carbonates (measured by three IRMSs over 20-years), along the traceability path in realization of VPDB-co2 scale, including $\Delta^{45/46}$ relative to the WRG, $\Delta^{45/46}$ to NBS19-co2 & $\delta^{13}C/\delta^{18}O$ to VPDB-co2, and the associated uncertainties at 95% of CL (see the four figures on the right). **Cal2** is the primary anchor for atmospheric measurements.

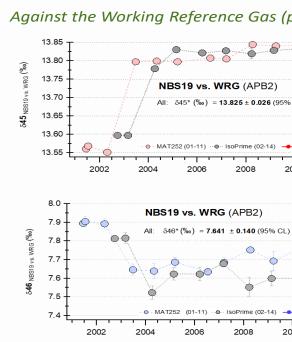
Summary: Take-home message

secondary carbonate standards (i.e., NBS18, Cal2, Cal1) are: when $\Delta^{45} \sim 10 \%$, $U(\Delta^{45}/\delta^{13}C)$: ~ 0.04 ‰ (95% CL) when $\Delta^{46} \sim 10 \%$, $U(\Delta^{46}/\delta^{18}O)$: ~ 0.17 ‰ (95% CL)

Environment and Climate Change Canada

Environnement et Changement climatique Canada

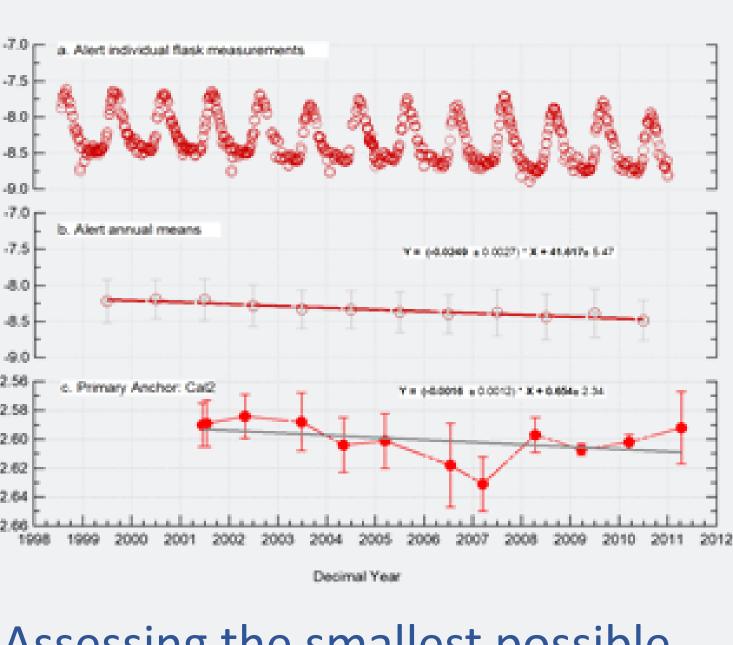
Climate Research Division, Atmospheric Sci. & Tech. Directorate, STB, Toronto, Canada


An example of requirements for detecting trends in $\delta^{13}C_{CO2}$ at Alert observatory, a global background site. The annual change of the standard is much less than that in atmospheric change at Alert: - 0.025 ± 0.003 ‰ /year

ir	NBS19 & NI	$3S18 CO_2$ with	*Results of δ^{13} C & δ^{18} nin WMO Community (library.wmo.int/index.php?lvl=notice_display&id=4748#.Yw5u
			84 Ampoules provided to 1 (2007-2008) 1 Environment Canada (EnCan), Canada 2 CSIRO Marine Atmospheric Research (CMA) 3 National Institute of Water & Atmosphere Re 4 Max Planck Institute for Biogeochemistry (M) 5 Scripps Institution of Oceanography (SIO), U 6 University of Heidelberg (UHei), Germany 7 University of Bern (UBern), Switzerland 8 National Institute for Environmental Studies
	Ανg. δ ¹³ C (2σ)	Ανg. δ ¹⁸ Ο (2σ)	⁹ Tohoku University (TU), Japan ¹⁰ CIO, University of Groningen, The Netherlan ¹¹ National Institute of Standards and Technolo
[1]	-5.059 ± 0.074‰	-23.018 ± 0.394‰	¹² University of Colorado (UC-INSTAAR/NOAA
[2]*	-5.018 \pm 0.074‰	$-23.018 \pm 0.394\%$	¹³ China Meteorological Administration (CMA) ¹⁴ LSCE, France
[3]	-5.070 ± 0.076 ‰	-23.131 ± 0.486‰	
[4]	-5.056 ± 0.069‰	-23.01 \pm 0.44 ‰	
[5]*	-5.015 \pm 0.069‰	-23.24 \pm 0.14 ‰	NBS19CO ₂
	palization of VPDB-CO ₂ scale_via N same as [1] with * Assonov 17 0 co	IBS19-CO ₂ produced by ECCC with prection ($\lambda = 0.528$);	h Craig ¹⁷ O correction ($\lambda = 0.5$);

Combined Uncertainties in Realization of VPDB-CO₂ via Carbonates over 20 years through 3 instruments

Ref.	∆ ⁴⁵ (‰)	±2σ (‰)	Δ ⁴⁶ (‰)	±2σ (‰)		Ref.	Δ ⁴⁵ (‰)	±2σ (‰)	Δ ⁴⁶ (‰)	±2σ (‰)
CO_2 from carbonates vs. * APB2 (WRG) $*_{since 2008}$				CO_2 from carbonates vs. NBS19-CO ₂						
NBS19	13.825	0.026	7.641	0.140	-	NBS18	-7.213	0.028	-20.779	0.316
NBS18	6.508	0.022	-13.332	0.163		Cal2	-4.583	0.038	-10.468	0.176
Cal2	9.180	0.047	-2.911	0.095	·	Cal1	-45.284	0.094	-20.046	0.302
Cal1	-32.102	0.070	-12.590	0.154						
 Overall, the uncertainties of the realization via carbonates are consistent over time, indicating 										
						Ref.	δ ¹³ C (‰)	±2σ (‰)	δ ¹⁸ Ο (‰)	±2σ (‰)
arbonate	s are cons	istent ov		icating			(‰)		(‰)	(‰)
arbonate omogene	es are cons eity of the s	istent ov standard	er time, ind	icating ocedure	<u>es;</u>		(‰)	(‰)	(‰)	(‰)
arbonate omogene The co r eference	es are cons <u>eity of the s</u> mbined ur s (carbona	istent ov standard acertaint tes) over	er time, ind <u>s and the pr</u> t ies of the s 20 years:	icating <u>ocedure</u> econda	<u>es;</u> Y	CC	(‰) D_2 from cal	(‰) rbonates v	(‰) s. VPDB-C	(‰)
arbonate omogene The co i eference	es are cons <u>eity of the s</u> mbined ur s (carbona	istent ov standard acertaint tes) over	er time, indi <u>s and the pr</u> t ies of the s	icating <u>ocedure</u> econda	<u>es;</u> Y	CC NBS18 Cal2	(‰) 0 ₂ from cal -5.059 -2.598	(‰) rbonates v 0.029 0.039	(‰) s. VPDB-C -22.947 -12.650	(‰) CO ₂ 0.323 0.166
arbonate comogene The con eferences when Δ^{45}	es are cons eity of the s mbined un s (carbona ~ 10 ‰, U	istent ov standard certaint tes) over Δ^{45}/δ^{13}	er time, ind <u>s and the pr</u> t ies of the s 20 years:	icating <u>cocedure</u> econda 66 (95%	<u>es;</u> y CL)	CC NBS18	(‰) 0 ₂ from cal -5.059	(‰) rbonates v 0.029	(‰) s. VPDB-C -22.947	(‰) CO ₂ 0.323
arbonate comogene The con eferences when Δ^{45}	es are cons eity of the s mbined un s (carbona ~ 10 ‰, U	istent ov standard certaint tes) over Δ^{45}/δ^{13}	rer time, ind <u>s and the pr</u> t ies of the s 20 years: C): ~ 0.04 9	icating <u>cocedure</u> econda 66 (95%	<u>es;</u> y CL)	CC NBS18 Cal2	(‰) 0 ₂ from cal -5.059 -2.598	(‰) rbonates v 0.029 0.039	(‰) s. VPDB-C -22.947 -12.650	(‰) CO ₂ 0.323 0.166


NBS19 to WRG

• Based on the 20-year records in realization of VPDB-CO₂ scale at ECCC using NBS19, NBS18 & other two carbonates (via three IRMS instruments), The combined uncertainties of the

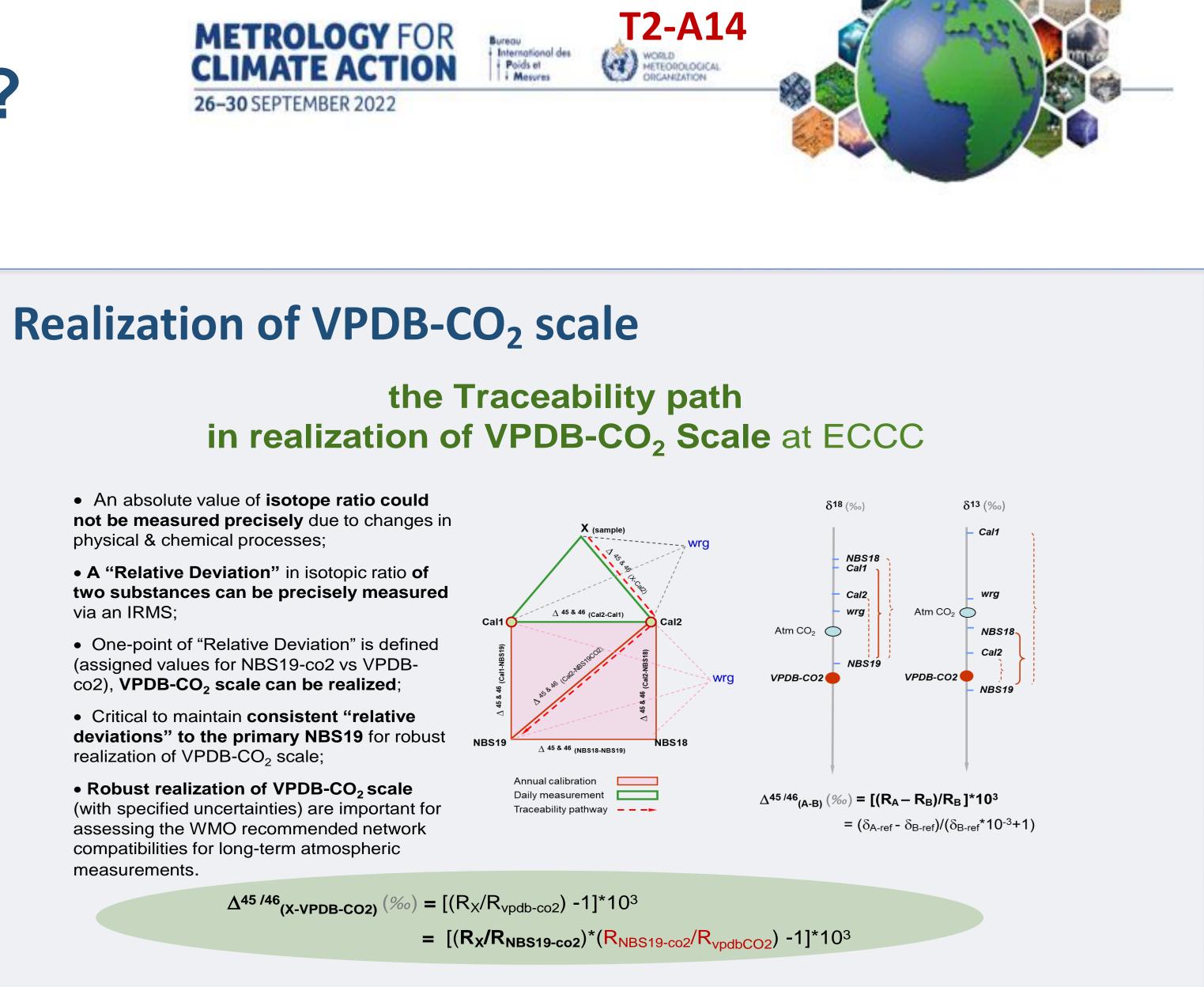
Assessing the smallest possible bias/difference in $\delta^{13}C_{CO2}$ & $\delta^{18}O_{CO2}$ among multiple labs in WMO /IAEA community when carbonate standard NBS18-CO₂ is measured. The variations well exceed the WMO recommended compatibility targets.

ia an IRMS

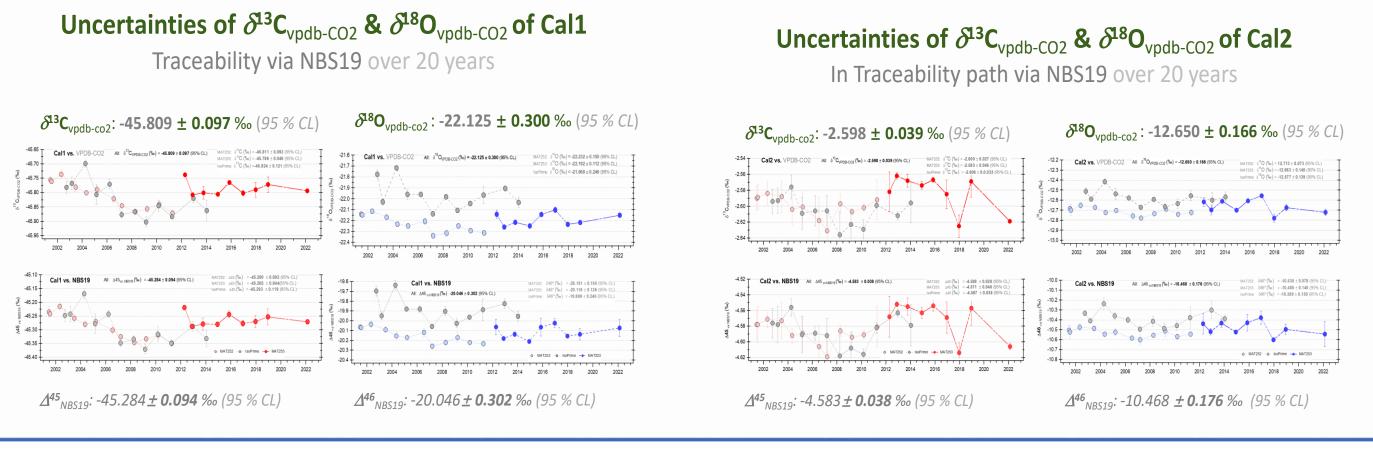
measurements.

Linking atmospheric measurements to the primary scale is through two levels of standards (NBS19-CO₂ & secondary carbonates: NBS18, Cal1 & Cal2) as the traceability path in realization of VPDB-CO₂ scale at ECCC.

Uncertainties of Relative Deviations in Δ^{45} , Δ^{46} or $\delta^{13}C_{VPDB-CO2}$, $\delta^{18}O_{VPDB-CO2}$


NBS18 to NBS19

Stability & Uncertainty of ∂^{45} and ∂^{46} of NBS19-CO₂ Uncertainties of $\delta^{13}C_{vpdb-CO2}$ & $\delta^{18}O_{vpdb-CO2}$ of NBS18 from Acid Digestion over time Traceability via NBS19 over 20 years $\delta^{13}C_{vpdb-co2}: -5.059 \pm 0.029 \% (95 \% CL)$ $\delta^{18}O_{vpdb-co2}: -22.947 \pm 0.324 \% (95 \% CL)$ Artzsz 1¹⁰C (‰) = 4.683 ± 0.028 (05% CL) Artzsz 1¹⁰C (‰) = 4.683 ± 0.028 (05% CL) → C (‰) = 6.687 ± 0.024 (05% CL) → C (‰) = 6.687 ± 0.024 (05% CL) → C (‰) = 6.687 ± 0.024 (05% CL) → C (‰) = 4.687 ± 0 NBS18 vs. VPDB-CO2 All: 6¹³C_{VPDB-CO2} (%) = -5.059 ± 0.029 (95% CL) MA All: δ45* (‰) = **13.825** ± **0.026** (95% CL) 2006 2008 2010 2012 2014 2016 2018 2020 2022 20.3 20.4 20.4 20.4 0 Al: M² states 0, **NBS19** MAT222 Ja6 (¹/₁₀) = 20.800 ± 0.174 (05% CL) MAT232 Ja6 (¹/₁₀) = 20.800 ± 0.174 (¹/₁₀) = 20.800 ± 0.174 (¹/₁₀) = 2014 2016 2018 2020 202 ∆⁴⁵_{NBS19}: - 7.213 ± 0.028 ‰ (95 % CL) ∆⁴⁶_{NBS19}: -20.779 **± 0.316** ‰ (95 % CL)


The combined uncertainties of Cal2 (the primary anchor) via one IRMS instrument (2001-2011): $U(\Delta^{45}/\delta^{13}C)$: ~ 0.03 ‰ (95% CL); $U(\Delta^{46}/\delta^{18}O)$: ~ 0.08 ‰ (95% CL)

• The combined uncertainties over 20-years in the realization of VPDB-CO₂ scale from this work indicate the homogeneity of the carbonate standards (including NBS18) and the associated consistent procedures (e.g., acid digestion & IRMS measurements), at the same time implying that meeting the WMO recommended network compatibility targets over time is still challenging.

Lin Huang et al., T2-A14, BIPPM-WMO Metrology for Climate Action, 26-30 September 2022

Call to NBS19

Cal2 to NBS19

