

HARVARD & SMITHSONIAN

HITRAN2020: Practicality, Accuracy, Completeness, Traceability (PACT)

Iouli Gordon, Laurence Rothman, Robert Hargreaves, Eamon Conway, Ekaterina Karlovets, Robab Hashemi, Frances Skinner, Artem Finenko,

Roman Kochanov, Yan Tan, Christian Hill

and

HITRAN contributors and validators world wide

Metrology for Climate Action, Online, September 2022

HITRANonline

2

iltps.

			Maa 10 oo 10 o 1 oo 10 10 10 10 10 10 10 10 10 10 10 10 10	poo 40000011	000 10 11 00 10 11 11 01 00 11 10 10 01 10 01 01				
Home	Data Access	Documentation	Conferer	nces	Links	Ab	out		
The HITRAN Da	Line-by-line					ð	• •		
	Absorption Cross Sections					•	Ŭ		
HITRAN is an acronym database. HITRAN is a	Collision Induced	smission molecular abso copic parameters that a v	rption /ariety	News	25000 users milestone				,
of computer codes use of light in the atmosph	Absorption Aerosol Properties	the transmission and em	ission	Oct 2021 Content					
	НІТЕМР			corresponds to the HITRAN2020 edition					
🈏 @hitran	НАРІ			Apr 2021 History of HITRAN by Dr. Laurence S. Rothman					
	Supplemental			Apr 2020 H	IITEMP now includes m	ethane		•	,
Tutorials				Jul 2015 A HITRAN's s	Il inquiries can be made support team at info@h	e to itran.org		•	
				Database	e Updates				
				Aug 2022 : parameter	의 ħ 뿅 뽀 🗭 Updated bro 's for CO ₂ and H ₂	oadening	:	•	
				May 2022 4340 cm⁻¹	🍄 H ₂ O line list update	above		•	
www.hitran.o	rg			Nov 2021 region rest	Lines of ¹⁶ 0 ₃ in 850-980 tored) cm ⁻¹		•	

 \wedge

⁹9.

Logged in as Iouli Gordon | Logout

New quadrennial edition

Journal of Quantitative Spectroscopy & Radiative Transfer 277 (2022) 107949

Contents lists available at ScienceDirect

Journal of Quantitative Spectroscopy & Radiative Transfer

journal homepage: www.elsevier.com/locate/jqsrt

Article describing the HITRAN2020 edition is in Open Access in JQSRT

The HITRAN2020 molecular spectroscopic database

I.E. Gordon^{a,*}, L.S. Rothman^a, R.J. Hargreaves^a, R. Hashemi^a, E.V. Karlovets^a, F.M. Skinner^a, E.K. Conway^a, C. Hill^b, R.V. Kochanov^{a,c,d}, Y. Tan^{a,e}, P. Wcisło^f, A.A. Finenko^{a,g}, K. Nelson^a, P.F. Bernath^h, M. Birkⁱ, V. Boudon^j, A. Campargue^k, K.V. Chance^a, A. Coustenis¹, B.J. Drouin^m, J.–M. Flaud^s, R.R. Gamache^o, J.T. Hodges^p, D. Jacquemart^q, E.J. Mlawer^r, A.V. Nikitin^c, V.I. Perevalov^c, M. Rotger^t, J. Tennyson^u, G.C. Toon^m, H. Tran^L, V.G. Tyuterev^{t,d,c}, E.M. Adkins^p, A. Bakerⁿ, A. Barbe^t, E. Canè^w, A.G. Császár^{y,z}, A. Dudaryonok^c, O. Egorov^c, A.J. Fleisher^p, H. Fleurbaey^k, A. Foltynowicz^A, T. Furtenbacher^y, J.J. Harrison^{B,C,D}, J.–M. Hartmann^v, V.–M. Horneman^E, X. Huang^F, T. Karman^a, J. Karns^{a,W,X}, S. Kassi^k, I. Kleiner^M, V. Kofman^R, F. Kwabia–Tchana^M, N.N. Lavrentieva^c, T.J. Lee^G, D.A. Long^p, A.A. Lukashevskaya^c, O.M. Lyulin^c, V.Yu. Makhnev^N, W. Matt^{a,X}, S.T. Massie^H, M. Melosso^x, S.N. Mikhailenko^c, D. Mondelain^k, H.S.P. Müller¹, O.V. Naumenko^c, A. Perrin^L, O.L. Polyansky^{u,N}, E. Raddaoui^q, P.L. Raston^{J,K}, Z.D. Reed^p, M. Rey^t, C. Richard^j, R. Tóbiás^y, I. Sadiek^{A,O}, D.W. Schwenke^G, E. Starikova^c, K. Sung^m, F. Tamassia^w, S.A. Tashkun^c, J. Vander Auwera^P, I.A. Vasilenko^c, A.A. Vigasin^Q, G.L. Villanueva^R, B. Vispoel^{T,S,o}, G. Wagnerⁱ, A. Yachmenev^{U,V}, S.N. Yurchenko^u

Summary:

- 88 authors
- 82 pages
- 909 references

www.hitran.org

Scheme for Construction

HITRAN2020 line-by-line section (55 molecules)

Molecules (isotopologues) in the line-by-line portion of HITRAN

H ₂ O (7)	SO ₂	(4)	ні	(2)	H ₂ O ₂ (1)	HO ₂ (1)	CH ₃ CN (1)	COCl ₂ (2)
CO ₂ (12)	NO ₂	(2)	CIO	(2)	C ₂ H ₂ (3)	O (1)	CF ₄ (1)	SO (3)
O ₃ (5)	NH ₃	(2)	ocs	(6)	C ₂ H ₆ (3)	CIONO ₂ (2)	C ₄ H ₂ (1)	CH ₃ F (1)
N ₂ O (5)	HNO ₃	(2)	H₂CO	(3)	PH ₃ (1)	NO+ (1)	HC ₃ N (1)	GeH ₄ (4)
CO (6+3) 💦	ОН	(3)	HOCI	(2)	COF ₂ (2)	HOBr (2)	H ₂ (2)	CS ₂ (4)
CH ₄ (4)	HF	(2)	N ₂	(2)	SF ₆ (1)	C ₂ H ₄ (2)	CS (4)	CH ₃ I (1)
O ₂ (3)	HCI	(4)	HCN	(3)	H ₂ S (3)	CH ₃ OH (1)	SO ₃ (1)	NF ₃ (1)
NO (3)	HBr	(4)	CH₃C	l (2)	HCOOH (1)	CH ₃ Br (2)	$C_2 N_2$ (1)	

Molecules for which the line lists were updated/extended with respect to HITRAN2016 are in bold New molecules or increased amount of isotopologues for existing molecules are highlighted in red;

Updates in the line by line section

• Improved quality of the existing parameters

For many molecules in the database, but some are particularly important for the spectroscopy of the atmosphere.

- Many added bands for most species in the database
- Partition sums are (re)calculated for all species (Gamache et al. JQSRT 271 (2021) 107713)
- Line shapes:
 - VP updated form many molecules
 - SDV parameterization (incl. CO₂, CO, N₂O)
 - \bullet Additional broadening by various perturbers (incl. $\rm H_2O)$

Validations of H₂O in HITRAN2020

HITRAN2020 and HITRAN2016 compared at modelling the atmospheric transmittance. Compared to high-resolution solar spectrum Baker et al. ApJ 2020

Further Validations of H₂O in HITRAN2020 Using TCCON

 Δ Eli Mlawer and Mike Iacono (AER)

Further Validations of H₂O in HITRAN2020 Using TCCON

Example: ozone improvements

- Major overhaul of the O₃ line list and cross-sections from MW to UV.
- **MW** In the region of pure rotational transitions, the values from the JPL catalogue were chosen
- FIR

Below 1180 cm⁻¹ the DLR line list (which includes new broadening).
 https://dx.doi.org/10.5281/zenodo.4428825

- Above 1180 cm⁻¹ and up to 5791 cm⁻¹ new S&MPO line list partially described in Tyuterev et al., (2021) JQSRT, 272, 107801 is used except for the 2975-3205 cm⁻¹ region, where UCL/Paris line list is used (Jacquemartet al., (2021) JQSRT 269, 107651)
- NIR

✤ Above 5791 cm⁻¹ HITRAN2016 line list is retained for HITRAN2020

UV * UV cross-sections are coming from the new measurements from DLR

Detailed evaluations against laboratory and atmospheric spectra carried out by Geoffrey Toon (JPL)

https://mark4sun.jpl.nasa.gov/report/O3_Spectroscopy_Eval_2021_07_14.pdf

Ozone (contd..) consistency in the IR bands

Effectively the intensities of bands in the MW, 5 and 10 μ m regions are increased by **2.8-3.8%**. While different effective scaling factors are observed elsewhere.

Example: 0₂

 $1.27 \ \mu m \ band$

New model based on separation of magnetic

dipole and electric qudrupole contributions thanks to recent data from Grenoble:

```
Konefał et al., JQSRT(2020) 241, 106653,
Tran et al., (2020) 240, 106673.
and NIST:
```

Fleurbaey ., JQSRT(2021) 261, 107495

Figure credit: Ha Tran (LMD, Paris)

Modern structure and interface at www.hitran.org

\sim	and the second sec	Lo	ogged in as Iouli Gordon Logout
Documentation	Conferences	³⁰⁰⁰ /10001010010111010011100101100101100101100101	HAPI: The HITRAN Application Programming Interface
smission molecular absor copic parameters that a va the transmission and emi	ption ariety ssion Sep 2021 Apr 2021 S. Rothn Apr 2020 Jul 2015 HITRAN Databa Oct 2021 HITRAN this sect	The data on the onds to the HITRAN: 1 21000 users miles 1 History of HITRAN 1 HITEMP now inclu 1 All inquiries can but 2 support team at <i>in</i> 2 support team at	Introduction The HITRAN Application Programming Interface (HAPI) [1] is a set of routines in Python which aims to provide remote access to functionality and data provided by HITRANonline. At the present time, the API can download, filter and process line-by-line transition data. The main purpose of this API is to extend the functionality of the main site, in particular, for the calculation of spectra using several types of line shape, including the flexible HT (Hartmann-Tran) profile [2] and optionally accounting for instrumental functions. Each feature of the API is represented by a Python function taking a set of arguments which describe the parameters defining the task. The current version of HAPI and user manual is available for download using the following links: • Appi_manual.pdf In addition, the HAPI project and version history are available on Github: • O_ https://github.com/hitranonline/hapi HAPI is described in Ref. [1], and futher suggestions and comments are welcome: please email rkochanov@cfa.harvard.edu. Citation If you use HAPI in your research or software development, please cite it using the following reference: • R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcislo, C. Hill, J.S. Wilzewski, HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data, J.
	Documentation Smission molecular absor copic parameters that a va the transmission and emi	Documentation Conferences smission molecular absorption copic parameters that a variety the transmission and emission Oct 2021 correspondent of the transmission and emission Sep 2022 Apr 2020 Jul 2015 HITRANS HITRANS Database Oct 2021 Sep 2022 Sep 2022 Sep 2022 Apr 2020 Jul 2015 HITRANS Sep 2022 Sep 2022 Sep 2022 Sep 2022 Sep 2022 Apr 2020 Jul 2015 HITRANS Sep 2022 Sep 2022 Sep 2022 Sep 2	Documentation Conferences Links smission molecular absorption copic parameters that a variety the transmission and emission Oct 2021 (The data on the corresponds to the HITRAN): Sep 2021 21000 users miles Apr 2021 History of HITRAN S. Rothman Apr 2020 HITEMP now inclue Jul 2015 All inquiries can be HITRAN's support team at <i>in</i> Dct 2021 [The updates to HITRAN section as they appear

www.hitran.org/hapi

To make a reference to particular version of HAPI, use corresponding DOI from the <u>Zenodo</u> community in addition to the reference given above.

Improved parameters, new bands, isotopologues

HITRAN2016

Other examples include NO, NO₂, OCS, HCN, HCOOH etc...

Improved parameters, new bands, isotopologues

16

Non-Voigt line shapes (CO₂)

Update of the CO₂ LM package

The line mixing package for CO_2 was updated. The approach by Lamouroux et al. (2015) is used for predicting the line-mixing effect in all the bands of CO_2 either accounting for the full line mixing (W) or the first-order approximation (Y):

- 1) VP+ first order LM
- 2) VP+ full LM

3) SDV+ first-order LM. This Fortran package is available at HITRANonline: https://hitran.org/supplementary/

Cross sections (.xsc)

• Also added UV and planetary relevant cross-sections

Modern structure and interface at www.hitran.org

N₂-He

 $N_2 - N_2$

www.hitran.org/cia

1

0

1 0 0 0

5 0 0 0

N2-He 2018.cia

N2-N2 2018.cia

÷

Update of the CIA section

Search Results

708 transitions written in 4.02 secs (query time: 0.05 secs).

Hover the mouse pointer over parameters below for citation and notes.

Isotopologue	v	S	A	<i>Yair</i>	V self	E"	n _{air}	δ _{air}	_ J'	J″
¹³ C ¹⁸ O	5896.4479	1.219e-31	0.003468	0.0432	0.046	1953.1202	0.67	-0.009	32	33
¹³ C ¹⁸ O	5902.7851	2.084e-31	0.003514	0.0438	0.046	1838.582	0.67	-0.009	31	32
¹³ C ¹⁸ O	5909.0354	3.501e-31	0.00356	0.0443	0.047	1727.4728	0.67	-0.009	30	31

26

Referencing Multiple Sources

¹² C ¹⁸ O	6140.6839	1.337e-26	0.005193	0.0553	0.059	384.2612	0.72	-0.007	13	14	
$^{12}C^{17}O$	6141.6383	4.729e-29	0.004659	0.0471	0.05	1312.6581	0.67	-0.008	25	26	
$^{13}C^{17}O$	6141.6494	4.207e-29	0.005023	0.0712	0.077	10.7362	0.74	-0.005	3	2	
$^{13}C^{16}O$	6141.8175	4.83e-26	0.005089	0.0538	0.058	499.5146	0.7	-0.008	15	16	
¹² C ¹⁸ O	6141.9807	5.238e-30	0.02402	0.0651	0.071	2128.4137	0.74	-0.006	5	4	
$^{12}C^{17}O$	6143.0759	5.324e-31	0.02364	0.0569	0.062	2405.8643	0.74	-0.007	11	12	
$^{13}C^{16}O$	6143.5520	1.317e-29	0.02055	0.0757	0.081	2099.7101	0.75	-0.005	2	1	
$^{12}C^{16}O$	6144.8286	2.448e-29	0.02102	0.0477	0.051	3378.9537	0.67	-0.008	24	25	
$^{13}C^{17}O$	6144.8503	5 2890-29	0.00528	0.0677	0 074	21 472	0 74	-0.006	4	2	
$^{12}C^{16}O$	6144.8924	1326. I	.E. Gordo	n (2020)). Inte	ensities of	the ba	ands wi	th Δ	v=3	from Ref. [1326a] were
$^{12}C^{18}O$	6145.0227	multipli	ed by a fa	actor 1.	026 ba	sed on the	e expe	eriment	al w	orks	from Ref. [1326b] and Ref.
$^{12}C^{18}O$	6145.6023	[1326c]	`								
$^{13}C^{16}O$	6146.9004	• 132	26a. G. Li	, I.E. G	ordon,	L.S. Rothi	man, `	Y. Tan,	SM	. Hu	, S. Kassi, A. Campargue,
$^{13}C^{16}O$	6146.9495	E.S	. Medved	lev, "Ro	vibratio	onal Line L	ists fo	or Nine	Isot	opolo	ogues of the CO Molecule in
$^{12}C^{16}O$	6147.0017	the	x ¹ Σ ⁺ Gr	ound El	ectroni	c State", 7	The As	strophy	sical	Jour	rnal Supplement Series
$^{12}C^{17}O$	6147.8670	21	6 15 (201	5). [<u>lin</u> ł	<u>k to art</u>	icle] [ADS]				
$^{12}C^{17}O$	6147.8924	• 132	26b. A. C	ygan, P.	Wcisło	o, S. Wójte	ewicz,	G. Kow	zan	, M. 3	Zaborowski, D. Charczun,
$^{13}C^{17}O$	6147.9565	К.	Bielska, F	R. S. Tra	wiński	, R. Ciurył	o, P. M	1asłows	ki, E). Lis	ak, "High-accuracy and
$^{12}C^{18}O$	6147.9662	wic	le dynam	ic range	e frequ	ency-base	d disp	ersion	spec	troso	copy in an optical cavity",
$^{12}C^{16}O$	6149.7093	Ор	tics Expre	ess 27 2	1810 (2019). [<u>lir</u>	<u>ik to a</u>	article]	[<u>AD</u>	<u>S]</u>	
$^{13}C^{16}O$	6150.1502	• 132	26c. Y. Bo	orkov, A	. Solod	ov, A. Solo	odov,	T. Petro	va,	E. Ka	arlovets, V. Perevalov,
$^{12}C^{18}O$	6150.4248	"Fo	urier trar	sform (CO spe	ctra near :	1.6 µn	n" <i>, Jou</i> i	rnal	of Qi	uantitative Spectroscopy
$^{12}C^{18}O$	6150.8113	and	d Radiativ	e Trans	sfer 25	3 107064 (2020). [<u>link</u>	to a	rticle] [ADS]
$^{13}C^{17}O$	6150.9677										
$^{12}C^{16}O$	6151.1146	3.767e-29	0.02131	0.0483	0.051	3284.0846	0.67	-0.008	23	24	
$^{13}C^{16}O$	6151.9853	7.522e-26	0.005251	0.0553	0.059	385.7275	0.72	-0.007	13	14	
$^{12}C^{17}O$	6152.6093	6.876e-31	0.02448	0.0586	0.064	2320.5079	0.75	-0.007	9	10	
13 16 0		0.011.00	0.0040	0.0051	0.071	0100 4000			_		
C U	6153.3014	2.911e-29	0.0243	0.0651	0.071	2132.4969	0.74	-0.006	5	4	

Future Updates

- Adding continuum absorption by water vapor. Working with Eli Mlawer's group at AER on parametrizing both self and foreign continuum to be included in HITRAN
- New trace species. More isotopologues for existing molecules
- More bands for trace gases, especially in the FIR/TIR
- More lines with sophisticated line shapes. The new requirements for spectral uncertainties have been reduced to 0.1%!
- More CIA and laboratory cross-sections (got permission to get the rest of PNNL). Wider temperature regimes
- Increase user engagement

Acknowledgments:

We would like to thank all the contributors and collaborators who have worked towards the HITRAN2020 edition and validated the data. It was not easy in the times of pandemic.

Development of HITRAN2020 was supported through the NASA grants: NNX17AI78G, NNX16AG51G, 80NSSC20K0962, 80NSSC20K1059.

HITEMP FOR BROWN DWARFS

- T-class brown-dwarfs often referred to as "methane" dwarfs due to onset of CH₄ absorption
- H and K spectral bands used for classification

▼ H band overview from Tannock et al. (2022), MNRAS, in press

- Tannock et al. (2022), in press
- 1.46–2.48 µm measurements
 - T6 (1060 K)
 - R=45,000 (Gemini South/IGRINS)
- CH₄ HITEMP list provides clear improvement for brown dwarfs models
 - "Bobcat Alt A" model

MNR

(2022)

al.

et

from Tannock

Model with HITEMP CH₄

CO IMPROVEMENTS

- CO in HITEMP originates from Li et al. (2015)
- HITRAN2020 contained intensity scaling for some bands to make more consistent with modern observations
 - Not carried over to HITEMP
- New ab initio data from Meshkov, et al. (2022), JQSRT 280,108090
 - Positions and intensities can be used for updating HITRAN and HITEMP
 - Improvements shown for 1-0 and 3-0 bands
 - The 3-0 band comparison with very highly accurate experiments from Bielsja et al. (2022) Phys Rev Letters

Access to different broadeners

HITRAN	o <u>nline</u>	\frown	STICOTIONIOLIDIUS	Logge	d in as Iouli Gordon <u>Logout</u>
Home	Data Access	Documentation	Conferences	Links	About
Line-by-Line Se	earch				🌣 🕗 🛔
New Output Form	at				

Edit this output format by dragging (or double-clicking) parameters. Reorder them by dragging rows within the table.

Save and Return to Data Search Cancel

Output Format Name:	For	_planetary_	_experts
---------------------	-----	-------------	----------

Description:	Here we select broadening due to the pressure of <u>J</u> uncertainty codes and re	ng and shifting parameters H2 and He along with their eferences.
Field separator:	[tab]	🖉 Fixed width format 🟮
Line endings:	Windows (CR LF)	🗆 Output header line
🔲 HDF5 output		

New Output Format				
Parameter	Units	<u>C</u> Fortran Format	Err	Ref
0 Molecule ID		<u>12</u>		
0 Isotopologue ID		<u>11</u>		
Ο ν	cm ⁻¹	<u>F12.6</u>	\odot	\odot
Ο <i>γ</i> _{H2}	cm ⁻¹ ·atm ⁻¹	<u>F6.4</u>	0	\odot
0 n _{H2}		<u>F7.4</u>	\odot	\odot
θ δ _{H2}	cm ⁻¹ ·atm ⁻¹	<u>F9.6</u>	0	\odot
Ο γ _{He}	cm ⁻¹ ·atm ⁻¹	<u>F6.4</u>	\odot	\odot
0 n _{He}		<u>F7.4</u>	0	\odot
Ο δ _{He}	cm ⁻¹ ∙atm ⁻¹	<u>F9.6</u>	\odot	\odot

Av	Available Parameters								
	Parameter								
0	$Y_{\rm air}$	<u>E10.3</u>	1						
0	qns'	<u>A256</u>							
0	qns"	<u>A256</u>							
0	$\beta_{\rm G, \; self}$	<u>F9.6</u>							
0	Transition ID	<u>112</u>							
0	.par line	<u>A160</u>							
0	$\delta'_{\rm H2}$	<u>E10.3</u>	I						
0	V _{CO2}	<u>F6.4</u>							
0	n _{CO2}	<u>F7.4</u>							
0	$\delta_{\rm CO2}$	<u>F9.6</u>	1						

Broadening by H₂O added for the first time

Already available: CO_2 , N_2O , CO, CH_4 , O_2 , NH_3 , and H_2S broadened by water. Tan, et al., J. Geophys. Res. Atmos. 33 (2019) 2019JD030929

33

New molecules (examples CS₂ and NF₃)

- CS₂ line list is based on Karlovets et al. (2020) JQSRT 258, 107275
- NF₃ line list is based on Egorov et al., JQSRT(2019) 239, 106668

Ozone (contd..) overall reduction of RMS

• The RMS values are reduced throughout the spectral regions. In particular, line positions are much improved. See validation with a balloon spectra below.

Accessing HITRAN with HAPI

O HAPI (HITRAN Application Programming Interface) [1]

• A free open source Python module (library) which provides a set of tools for working with structured spectroscopic data from different sources.

