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Motivation

Since 1993, altimetry data have enabled monitoring of global mean sea level (GMSL) rise.
Uncertainty requirements defined by the GCOS in 2011 have now been reached (Table 1).
Recently, new stability uncertainty requirements have been established in order to address
scientific questions related to climate change like the understanding of the Earth’s water and
energy cycles at global and regional scales (see Table 1 and Meyssignac et al., 2019; in prep.).
The aim of the ASELSU project is to identify if instrumental improvements are needed for
Sentinel-6 Next Generation altimetry missions in order to meet the new scientific requirements.
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Establishing the end-to-end uncertainty budge
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budget (Figure 3).

The computation of the sea level uses information from several observations systems, e.g.

altimeter, radiometer, orbit. The ASELSU project, focuses on the altimetry instrument (Figure 4).

GMSL trend < 0.3 mm/yr 0.3-0.5 mm/yr <0.1 mm/yr
GMSL acceleration Not defined 0.07-0.12 mm/yr? < 0.05 mm/yr?
MSL trend (~100 km) | <1 mm/yr 0.78-1.22 mm/yr < 0.5 mm/yr
MSL acceleration Not defined 0.06-0.12 mm/yr? Not defined

Table 1: Requirements (GCOS, 2011; Meyssignac et al., 2019) and state-of-the-art estimates (Ablain et al., 2019; Prandi
et al., 2021) for the global and regional mean sea level (MSL) rise stability uncertainty (5-95 % confidence level).

Level 3 GMSL uncertainty budget

The current mean sea level uncertainty
budget has been established for Level 3
altimetry data by Ablain et al. (2019) and
Guérou et al. (2022) at global scale
(Figure 1) and by Prandi et al. (2021) at

local scale.

Over 1993-2021, the GMSL rose by +3.3
+/- 0.33 mm/yr (90 % confidence level)

and accelerated by 1.2 +/- 0.6 mm/yr per
decade (updated from Ablain et al., 2019
and Guérou et al., 2022).
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Figure 1: GMSL trend uncertainty partitioning
from the Level 3 uncertainty budget of Ablain
et al. (2019) and Guérou et al. (2022).
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Figure 2: Uncertainty propagation scheme from climate data
records (CDR) to essential climate variables (ECV).

The Level 3 uncertainty budget (Figure 2) allows a robust estimation of the GMSL trend and
acceleration uncertainties. However, an end-to-end uncertainty budget is necessary to know
the relative contribution of each source of uncertainty from the raw measurements, hence

to identify whether instrumental improvements would enable reaching the new uncertainty
requirements for climate studies.

Conclusions and outlook

e Quantifying each source of uncertainty from the raw measurement is challenging.

® A comprehensive end-to-end sea level rise stability uncertainty budget will require an
in-depth study of all observing systems involved in the computation of the mean sea level.

e Future works include identifying possible ways of improving the altimetry system to diminish
the sea level stability uncertainty. Improvements may involve instrumental changes but also
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novel system configurations (e.g. two tandem phases).
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Metrology tools applied to the altimetry sea level data are expected to improve the current
GMSL uncertainty budget by:

e knowing the partitioning of the sources of uncertainty from Level 0/1 (Figure 2);

e better understanding the error correlations between altimeter and radiometer
measurements;

fully tracing and documenting the information involved in the end-to-end uncertainty budget;
identifying known unknowns and potential unknown unknowns uncertainties;

CDR better modeling of the natural oceanic variability uncertainties;
estimating spatial correlations for the regional sea level uncertainty budget.
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Recommendation

We recommend other science areas approach their analysis this way: identifying the uncertainty
needed for new scientific understanding, and the dominant factors in the currently achieved
uncertainty so system improvements can be prioritized.
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