

Progress in Understanding the Natural Carbon Cycle with Remote Sensing CO₂ Observations

Junjie Liu^{1*}, David Baker², Sourish Basu³,Brendan Byrne¹, Abhishek Chatterjee¹, Frederic Chevallier⁴, Noel Cressie^{5,1}, Sean Crowell⁶, Matthew Johnson⁷, Scot Miller⁸, Sajeev Philip⁷ Andrew Schuh², Ning Zeng³, OCO project team

- 1. Jet Propulsion Laboratory, California Institute of Technology, United States of America
- 2. Colorado State University, United States of America
- 3. University of Maryland, United States of America
- 4. LSCE, France
- 5. University of Wollongong, Australia
- 6. University of Oklahoma, United States of America
- 7. AMES, NASA, United States of America
- 8. Johns Hopkins University, United States of America

Steady Improvement in X_{CO2} Retrievals

OCO-2

ACOS-GOSAT v2.9

v7: σ = 1.32 ppm $\int_{0}^{0} \int_{0}^{0} \int_{0$

Figure Courtesy: M. Kiel and C. O'Dell

- Natural Carbon Sink has Offset more than 50% of Anthropogenic Emissions so far;
- How much progress have been made in understanding the terrestrial biosphere carbon cycle with remote sensing CO₂ observations?
- What are the challenges and opportunities ahead ?

Hemispheric Flux Estimation

Regional Flux Estimation

- The flux estimation over Europe becomes more consistent with IS-based inversions from v7 to v9 OCO-MIP inversions, different from results based on early GOSAT retrievals. North Asia shows weaker sink based on satellite XCO2.
- Statistically different flux estimates over small countries over the tropics and high latitudes in V9 OCO-MIP inversions.

Evaluation against Independent Observations

between IS and LNLG experiments.

Interannual Variability

Impact of Extreme Climate Events

Byrne et al., 2021

• In combination with data from other sources, satellite XCO2 are used to quantify carbon flux anomaly due to the impact of extreme events **over small region**;

Remaining Carbon Budget Depends on Changes of Natural Carbon Sink with Climate as well as Anthropogenic Emissions

- More fraction of emitted CO₂ remains in the atmosphere with high cumulative CO₂ emissions;
- Understanding spatiotemporal distributions of the natural carbon sources and sinks and its changes with climate are as important as monitoring anthropogenic emissions to achieve climate goals.

Increasing Independent observations

• Regions with no independent observations collocate with large flux differences between LNLG-based and IS-based results.

Continue Improving Atmosphere Transport and Flux Inversion Infrastructure

